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An exact solution is obtained for the problem of the scattering of a Kelvin wave 
by a rotating bifurcated channel and it is shown that an appropriate secondary 
Kelvin wave is created in all the parts of the field. 

1. I N T R O D U C T I O N  

The problem being discussed in this paper  concerns the transmission 
and reflection of long waves (Lamb, 1932, Section 172) in a duct consisting 
of two infinite vertical plates in the presence of a semi-infinite barrier of 
zero thickness (bifurcated channel). 

The channel is assumed to be rotating at constant angular velocity (as 
a channel fixed to the earth) and  the depth of the fluid is uniform. 

The disturbance is due to a Kelvin-wave traveling in the lower part  of 
the duct in Figure 1. 

Regarding problems of this type various techniques have been used as 
the integral equation methods or Green's  function methods (Crease, 
1958; Buchwald, 1971). The present problem is attacked by application of 
the complex Fourier transform directly to the equations which, according 
to the linearized theory of long waves in a rotational system, govern the 
effect examined (Jones, 1952), and a suitable functional equation is de- 
rived. An exact solution, given for all parts of the field, shows the 
propagat ion of Kelvin waves in the whole field even in the "shadow" zone. 
This is due in a measure to the fact that even if there is only a single 
semi-infinite barrier in a rotating system, Kelvin waves are propagated in 
the shadow zone (Kapoulitsas, 1977). 
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The results obtained may be useful to interpret qualitatively the 
formation of tides in the case of an oblong island between two straight 
coastlines. 

2. EQUATIONS OF MOTION AND STATEMENT OF THE 
PROBLEM 

Assuming a time factor of e -i~ the linearized equations governing 
the propagation of long waves in a system rotating with an angular velocity 
2 f  are, in .rectangular Cartesian coordinates. 

O2~t + O2~t "F k2q~t----0 
Ox 2 Oy 2 

hk u = - i to-~x + ]  ~y  (2.1) 

hk2v  = - J ~ x  - ito O---y 

In these equations el is the total surface elevation above its mean 
level, u(x, y), v(x, y) are the particle velocities in x a n d y  directions, and h 
is the depth of the water assumed constant. 

Also c2k2=to2-f 2, c2=gh, where g is the gravitational acceleration, 
and to >f .  

Let us assume that a Kelvin wave 

travels towards the origin from inside of the region 

0<y.<<b, x < 0  

of a bifurcated channel consisting of the planes 

y = 0 ,  - - o o < x < o o  and y=a, - o o < x < o o  

and the half-plane 

y=b,  x < 0  

where a > b > O  (Figure 1). 
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Fig. 1. The rotating bifurcated channel. 

The whole field is composed of two regions: The region 
A (0<y  ~< b , -  oo < x <  oo) and the region 
B ( b < y < a , - o o  < x <  ~) .  

r The motion of the fluid, occupying the entire field, is assumed to 
satisfy equations (2.1) and we define the function 4~ as follows: 

= / ~ +~i  in region A 
o, (2.2) 

t q, in region B 

For convenience we put f =  kc sinh fl, 60 = kc cosh fl; the incident wave 
is then 

q~i = exp [ k( ix  cosh fl - y  sinh fl) ] 

The problem is now to determine the solution of the first of equations (2.1) 
satisfying the following conditions: 

~ o n y = O ,  - - ~ < x < ~  
O~P itanhfl = 0  j o n y = a ,  - ~ < x < ~  
8y [ o n y = b _ 0 ,  x < 0  

(2.3) 

which express that the normal component (v) of the velocity of the fluid 
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vanishes on the boundaries. In addition 

O~ ~r . 34, 
(~-~ - i tanhfl-~x/ /y=b-0=(-~v-t tanhB-~x)y=b+0 ' k  Y - o o < x < o o  

(2.4) 

expressing the continuity of the normal velocity across the line y = b , - o o  
< x <  oo, and 

ep(x,b-O)+ePi(x,b)=4~(x,b+O), x>O (2.5) 

which denotes the continuity of the field function 4~t(x, y)  across the 
half-plane y = b, x > 0. 

Finally the solution q~(x, y)  must satisfy the following edge conditions 
at the edge (0, b): 

d~----- 0(1) 

~'"@~ ~--- 0(X-  1/2 ) 
By 

asx--->O+_Oon y=b l 

asx--->O+_Oon y=bJ 
(2.6) 

In the following we assume for mathematical convenience that to is 
complex with a small positive imaginary part to2 (i.e., to = to l + t~ to1 >>to2 > 
0) and this implies that k must also be complex with a small positive 
imaginary part (i.e., k=k I +ik 2, kl>>k2> 0 ). 

The solution is obtained from the final results by taking o: 2---~0+ 0, 
which implies k 2 ~ 0  + 0. 

From (2.2) and the well-known result that all possible waves traveling 
along a channel are of order exp(-zo[X D as Ixl~oo in the direction of 
their propagation, where 

~'o < k2(1 _f2/to2)'/2 < k2 

it follows that 

q~= 0(e -'01x[) as x--->___ oo (0 <y < a) 

Thus the two-sided complex Fourier transform r  y )  of q~(x, y)  in 
x, defined by 

~(a,y)=('~q~(x,y)ei'~Xdx, et=o+i'r (o, z real) (2.7) 
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as well as the correspondent one-sided Fourier transforms ~_(a ,  y )  and 
�9 +(a, y )  of q~(x, y )  in x, from - oo to 0 and from 0 to + oo, respectively, 
exist and are regular in the regions [~'[< to, ~" < Zo, and "r >-~ '0  of the a 
plane, respectively. Evidently 

+_  (a ,  y )  + qb+ (o~, y )  = dg(ct, y )  (2.8) 

3. THE BASIC FUNCTIONAL EQUATION 

Taking the two-sided Fourier transform to the first of Equations (2.1) 
we get 

d2*(ct '  Y) y2~(ct, y )  = 0  (3.1) 
dy 2 

with 

3"2=(a2-k2)l/2 (3.2) 

As we shall see later ~b(et, y )  is even in 7, and thus the branch points 
of 3' at a = ___ k do not play any role. 

Equation (3.1) holds in the whole field and its general solution is 

A(a)e Yy + B(ot)e ry 
~(ct, y )  = C(~176 evy 

(0 < y  ~< b, region A) 
(3.3) 

(b < y  ~< a, region B) 

where the unknown A, B, C, D are functions only of a. 
The two-sided Fourier transforms of the first two of the boundary 

conditions (2.3) are, respectively, 

' (a ,  0) - a(tanh fl)d9 (a,  0) = 0 

�9 '(et, a ) -  ct(tanh fl)~(t~, a ) = 0  (3.4) 

The primes of ~b's are taken to mean the derivative with respect to y.  
Putting now 

y+ct tanhf l  
~ 7 - ~ t a n h f l  (3.5) 

and using equation (3.3) we get 

B=XA (3.6) 
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and 

Kal~alltsas 

D=XCe -2va (3.7) 

Next applying the two-sided Fourier transform to equation (2.4) we obtain 

fb'( a, b - O ) -  tanh fl.c~( a, b - 0 ) = ~ ' ( a ,  b+O)-a tanh  fl.r~( a, b + O) 

Using then equation (3.3) we have 

B -  C= (A - C)Xe -2Yb 

(3.8) 

(3.9) 

From (3.6), (3.7), (3.8), and (3.9) we also express C and D in terms of 
A, i.e., 

C= - A  sinh yb eV a (3.10) 
s i n h y ( a - b )  

sinh,/b 
D =  - h A  s i n h y ( a - b )  e-va (3.11) 

Next, on taking the one-sided Fourier transform (from -or  to 0) of 
the third of equations (2.3) we have 

�9 "(a,  b+_O)-atanhfl.d~_(a, b+_O)-itanhfl.ep(O, b ) = 0  (3.12) 

since qff0, b+ 0)-- qff0, b -  0)= ~(0, b). 
In equation (3.12) the upper (lower) signs go together. 
From equations (3.8) and (3.12) we obtain 

dg + ( a, b - O ) - a ( t a n h  fl )d~ + ( a, b - 0 ) +  i(tanhfl)~(0,  b) 

= &l(a, b+O)-a( tanhf l ) tb+(a ,  b+O)+i(tanhfl)@(O, b ) - -P+(a) ,  

(3.13) 

say. 
Lastly the one-sided Fourier transform (from 0 to ~ )  of equation (2.5) 

gives us 

�9 + ( a , b - 0 ) 4  i e x p ( - k b s i n h f l ) - - ~ + ( a , b + 0 )  (3.14) 
k cosh fl + a 
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Then by virtue of (2.8), (3.3), (3.6), (3.12), and (3.13) we obtain finally 

P + ( a) = 2 A(  7 +a tanh  fl )sinh Tb (3.15) 

Now we define the function Q_(a)  as 

O_(a)  = �89 ( ~ _ ( a ,  b - 0 ) -  ~ _ ( a ,  b+0) )  (3.16) 

Then by virtue of equations (3.3), (3.5), (3.6), (3.7), (3.8), and (3.14) we 
get finally 

i e x p ( - k b s i n h f l )  2A "rsinhya (3.17) 
2 Q _ ( a ) -  k c o s h f l + a  = y - a t a n h f l  " s inhT(a-b  ) 

Eliminating A between (3.15) and (3.17) we obtain 

i exp( - kb sinh fl ) = P + ( a ) ~ sinh),a 
2 Q _ ( a ) -  k c o s h f l + a  y2 _aEtanhfl " s i n h y b . s i n h y ( a - b )  

Equation (3.18) is a functional equation of the Wiener-Hopf type. 

(3.18) 

4. THE SOLUTION IN THE FOURIER TRANSFORM 
DOMAIN 

We proceed now to solve equation (3.18). First of all we have to 
factorize the term 

sinh 7b sinh'y(a- b) 
M ( a ) =  ysinhya (4.1) 

so that 

(4.2) 

where M+(ct) and M _ ( a )  are regular and free of zeros in an upper and a 
lower half-plane, respectively, the half-planes having a common strip. 

We note that M ( a )  is even in 3' and thus it has no branch points. 
More precisely M ( a )  is a meromorphic function of a and so it can be 
factorized by applying the infinite product expansion of an integral func- 
tion with infinitely many zeros (Titchmarsh, 1968; Noble, 1958). 



The factorization of M ( a )  is known (cf. Mittra and Lee, 1971) and the 
expressions for M+(a)  and M _ ( a )  are as follows: 

M + ( a )  

s i n k b . s i n k ( a - b )  ]1/2 f .a  [ a a 
~sin-~a : ] exp~t-~[blog-~+(a-b)log-gL--~_b j j]l 

O0 

~ (1+ o~ /e(ib./..)ii (1 + ot )ei(a_b),~/n - 
n =  1 \ Otnb ] n =  1 O t n ( a - b )  " 

x (4.3) 
fI ( l+ Ot ) ia"/n" 

n = 1 Olna 

where an l=i (~2n2 /12-k2)  1/2 and (~2n2 / [2 -k2 ) l / 2  is taken to have posi- 
tive real part or negative imaginary part arid l = a  or b or ( a - b ) .  Also 

M + ( a ) = M _ ( - a ) = O ( a  -1 /z )  a s l a l ~ o o i n z >  - k  2 (4.3a) 

From equation (4.3) it is clear that M + ( a )  have no branch points. 
M+(a)  has poles at a=--Ctna and zeros at a = - a n b  and a = - a n ( , _ b )  
( n =  1,2 . . . .  ). But all these points lie in the lower half a plane ( t " < - k 2 )  
and so M+(a)  is regular and nonzero in the upper half a plane (~-> - k 2 ) .  

M_(a) ,  therefore, has a similar behavior in the lower half a plane 

"r<k 2. 
Now equation (3.18) may be rewritten as 

ie - k b ~i~ l~ ( a - k cosh fl ) M _  ( a ) 
2 ( a - k c ~  k c o s h f l + a  

cosh2B 
= ( a + k c o s h f l ) M + ( a )  P+(a)  

(4.4) 

Next we decompose the term ( a - k c ~  into the sum 
k c o s h f l + a  

( a - k c o s h f l ) M _ ( a ) +  2 k c o s h f l . M _ ( - k c o s h f l )  
c t+kcoshf l  

2 k cosh fl . M _  ( - k cosh fl ) 
B 

a + k c o s h f l  
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The first fraction of the above expression is regular in T<k2; the 
second one is regular in T > --T 0 [since I m ( -  k cosh f l )=  - ~ 2 / c  < -k2(1 - 
f2/o~2)1/2=---To]. Equation (4.4) is then rewritten as 

2( a -  k cosh fl )M_ ( a)Q_ ( a) - i exp( -  kbsinh fl ) 

( a - k c o s h f l ) M _ ( a ) +  2kcosh f lM_( -kcosh f l )  ) 
X a + k cosh fl 

cosh2fl 

(a+kcoshf l )M+(a)  
P + (a)  - i exp( - kb sin_h) 

2k cosh ft. M_(  - kcosh fl) 

a + k cosh fl 

(4.5) 

The left-hand side of equation (4.5) is regular in ~'>--z0, while its 
right-hand side is regular in T < TO, and hence both sides are regular in the 
strip IT I< T0. It follows from analytic continuation that equation (4.5) is 
defined in the entire a plane and both sides are equal to an integral 
function p(a) say. Let us consider now the asymptotic behavior of the 
functions in equation (4.5). By virtue of equation (4.3) and using the e d g e  
conditions (2.6), we find that, according to Lionville's theorem on poly- 
nomials, p(a) is zero, and then from (4.5) we obtain 

2ikM+ ( k cosh fl) exp ( - kb sinh fl) 
P+(a) = coshfl M+(a) (4.6) 

Now on the basis of the known function P+(a) we determine the 
unknown functions A, B, C, and D from equations (3.15), (3.6), (3.10), and 
(3.11), respectively. Thus if we put 

E = ikM+ (k cosh fl)exp( - kb sinh fl ) 
coshfl (4.7) 

we have 

A =E(y+atanh f l ) s invb ,  B=E(7_a tanh f l ) s i n7  b (4.8) 

C =  - E  M+(~ 
( y + atanh fl )sinh y( a - b  ) ' 

M +(a)e -ra 
D = - E  (7 -a t anh f l ) s i nT (a -b )  

(4.9) 
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5. DETERMINATION OF THE SOLUTION ~(x, y) OF THE 
FIELD 

To obtain the field function ~(x, y) from its Fourier transform let us 
apply the inverse Fourier transform 

1 f? tb(a, y)e-i' Xda (5.1) , ( x ,  y ) =  oo 

where the path of integration is chosen to be the real axis ~-= 0. 
In the following we determine r y)  in the various parts of the field. 

5.1. Region A (O<y<b,-oo<x<oo). From equations (3.3) and 
(4.8) we get 

dg(a ,y) -E~( .y+~aYnhf l  + e~Y 7 - a tanh/3 ) (5.2) 

It is evident that ~(a,  y)  is even in -/and so has no branch points. The 
only singularities in it are (simple) poles coming from the poles of M+(a), 
the zeros of sin yb (except at ~=0), and the zeros of (V_+a tanh/3). For 
x < 0  we close the contour in the upper half-plane (Figure 2) where the 

.k 

-% X 

"L 

L 

Fig. 2. The upper half a-plane and the poles of r  on it. 



Scattering of Long Waves 783 

only singularities of ~(ct, y )  in ~->0 are the poles at 

a=ak=kcoshf l  and ct=Ctnb=i(n2cr2/b2-k2)l/2, n = l , 2  . . . .  

It can be shown that if the contour is closed by a sequence of 
concentric circular arcs F u, N =  1,2 . . . . .  such that each arc F~,, whose 
equation is l al--IR~r I, passes through no pole of ~(et, y )  and the radius R n 
tends to infinity as N--->or then ~(et, y ) ~ 0  on F~v as N--->oo. Therefore 

f r ~ ( a ,  y)e-i'~Xda=O 

on F where F is the limit of F~v, N---> oo and thus from the residue theorem 
we have 

ep(x, y ) =  iY, Res{~(a ,  y)e -iax } 

The calculation of the residues at the above poles gives 

+ ( x , y ) =  - 
k sin t iM 2 ( k cosh fl)exp( - kb sinh fl) 

sinh( kb sinh fl ) 

• exp[ k ( -  ixcoshfl+ysinhfl)] 

2iTrE ~ n ( - ) " M + ( a . )  

+ b'--'7-n:,a,,b[(rm2/b)+(a,,otanhfl)2 ] 

• I--b- cos-~-y [ n 7r n~r + anbtan h fl sin ~ y  )e-i~.~x (5.3) 

The first part of the fight-hand side of (5.3) represents the reflected 
Kelvin wave traveling in the duct (0 < y  < b, x < 0) to the left. 

The remaining part of the solution expresses the set of modes existing 
along the above duct. For bk < ~r all anb's become positive imaginary and 
all these modes represent attenuated stationary waves whose amplitudes 
decrease exponentially as x decreases. For x > 0 the contour may be closed 
in the lower half-plane in a manner similar to the above (Figure 3). It can 
be shown again that ~(a ,  y)-->0 on the lower semicircular arc, as the 
radius of this arc tends to infinity, and thus 

q~(x, y ) =  --iY, Res(~(t~, y)e  -i~x } 
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k,- C 

o 

J 

f 

Fig. 3. The lower half a-plane and the poles of @(a,y) on it. 

since the singularities of @(a, y )  in ~'<0 are only poles at 

[ ,~. 2n 2 \ 1 / 2  
ct=-ak =-kcosh/3 a n d  c~=-Otna= - i [ - - ~ - - k  2) 

as it can be easily seen from (5.2) if we replace M§ by M(a)/M_(a).  
After the calculation of the residues at the above poles we find 

- 

sinh [ k (a - b) sinh/3 ] exp( - kb sinh/3 ) 

sin_h( ka sinh/3) 

X exp [ k (ix cosh/3 - y  sinh/3) ] 

2iS ~ sin( ~rnb/2) 

tX n=l OZnaM(otna)[ (~n/a)2 + (OLnatanh/3) 2] 

[ ~rn ~rn . ~rn )eia.. x X ~ ~ COS--~-y -- anatanh/3 sm--a-y (5.4) 

The first part of (5.4) represents a Kelvin wave traveling in the 
direction of x increasing. 
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The second part (5.4) is the set of the existing modes in this part of the 
field. For ka<~r all these modes are attenuated standing waves whose 
amplitude decays exponentially to zero in the positive x direction. 

5.2. Region B (b < y  < a, - oo < x < oo). From equations (3.3) and (4.9) 
we get 

M + ( a ) [  e v ( ~ - y ) t  ) T + a t a n h f l  -?-atanhfle-~(~-Y) ] r  y )  = -Es inhy~a_b,  + (5.5) 

Obviously ~5(a, y )  has no branch points and the only singularities in it 
are (simple) poles coming from the poles of M+(a), the zeros of 
sinh "/(a-b) (except y=O) and the zeros of (y___a tanh fl). 

To determine ~(x,  y )  for x < O  we follow the same procedure as in 
region A (x < 0). Then we find 

q~(x, y )  = 
ksinhfl M2+ (kcosh  fl)exp[ - k(a + b)sinh fl] 

sinh( kasinh B ) 

• exp[ k(-ixcoshfl+ysinhfl)] 

2ierE ~ n(--)nM+(and) {r [~rn ] 
d 2 ~=1 (Trn/2)z+(a~dtanfl) z --~-cos - j - (y--a)  

+ andtanh fl sin [ d ( Y - a ) ] } e - i .... (5.6) 

where d =  a -  b. 
The Kelvin wave in (5.6) propagates to the left in the "geometric 

shadow" zone and its amplitude is 

exp( kbsinh fl ) . 
sinh( kbsinh fl ) 
sin_h(kdsinh fl ) 

times less than the amplitude of the reflected Kelvin wave in the semi- 
infinite channel ( 0 < y <  b, x < 0 )  [cf. equation (5.3)]. The set of the modes 
in the series of (5.6) may also involve traveling waves in the shadow zone 
with constant amplitude. This happens if kd>~r. For kd<~r all the modes 
present standing attenuated waves. 

Lastly, for x > 0 the solution is given, apart from an incident wave ~i 
[see equation (2.2)], by (5.4) as (it is expected and) can be easily verified if 
we take the inverse Fourier transform of (5.5) following the same lines as 
in the case of region A (x > 0). 
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6. THE CASE OF ELIMINATION OF THE PLATE y = et 

Assuming that the boundary y = a  is removed to infinity, i.e., a--->oo 
with b finite, we are led to the problem of diffraction by an infinite and a 
semi-infinite barrier discussed in a previous paper (Kapoulitsas, 1979) and 
we might expect that the solution of the present closed-field problem 
should be extended to include the solution of the previous open-field 
problem in the limit a--> oo. 

Upon this we note the following: 
(i) In section x<0,  0 <y <b of the field the solution (5.3) of the 

present problem differs from the solution of the previous problem only as 
regards the term M+(a ) ,  which is replaced there by bl/2L+(a,  b) [cf. 
equation (5.5) in the above paper], where 

[ sin kl ~ 1/2 
L+(a , l ) - "=-L_( -a , l )= t - -~ i - -  J exp{ ~ [ 1 -  C+ l o g ( ~ )  

(C is Euler's constant) and 

+ i~r 

n = 1 an! 

L(a ,  l ) = L + ( a ,  l ) .L_(a ,  1)= sinh ll, (6.2) 
l.rel~ , 

(cf. Mittra and Lee, 1971, p. 113). First we observe from (4.1) as a~oo,  
lima[ < k2, 

lim M(a)  lim sinhvb e (a-b)v-e  -(a-b)v sin~b = =b =bL(a ,  b). 
a---.>oo a---->oo y e va --e -va ybeVb 

To identify the solution of (5.3) for a-->oo with that in the open-field 
problem it remains to prove that lim M+(a)=  b l/2L +(a). 

Yet, M+(a) can be written as 

M+(a) = L + ( a ,  b). di/2L+(a' d) bl/2 
a l / E L + ( a ,  a )  

as it is found from (4.3) and (6.1). Therefore 

lim M + ( a ) = L + ( a ,  b) lim dl/2L+(a'  d)  b,/2=bl/2L+(a, b) 
a--,oo a---,oo al/2L+(a, a) 

since, as can be found, fiml_,ooll/2L+(a, l) exists and is finite. 
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(ii) In section x > 0 the first part of the solution (5.4) (Kelvin wave) 
becomes 

exp( -- 2kb sinh/3) rpi 

On the other hand each term of the series of (5.4) tends to zero as 
a---~oo, while the sum of the series is indeterminate. 

So the solution regarding finite a cannot be extended to describe the 
field in the region x > 0 for a---~ oo. 

We might note that the above sum corresponds, as a ~ o o ,  to the 
integral coming from the path along the branch-point cut in the correspon- 
dent open-field problem. 

A similar situation appears in the region x<O,b<<.y<a as follows 
from the solution (5.6). 

7. DISCUSSION 

We have just seen that in all sections of the field there exists an 
appropriate secondary unattenuated wave (the Kelvin wave) traveling with 
a constant velocity c = (gh) 1/2. 

The amplitude of this Kelvin wave, as a function of k, fl, and l ( l=  a, 
b, or d), depends on the breadth (l)  of the relevant section of the field and 
the depth (h) of the water, as well as on the frequency (to) of the incident 
wave and the angular velocity ( f )  of the rotation of the system. The  
appearance of Kelvin waves, which are the only nonharmonic in y waves 
in the field of the rotating channel, is perhaps the most obvious conse- 
quence of the effect of rotation. 

It must also be noted that for k=~rn/l (l=a, b, d) the amplitude of 
the corresponding n th term of the series in (5.3), (5.4), and (5.6), respec- 
tively, becomes infinitely large as then ctnt = 0  (resonance). Thus, we must 

~rn 
suppose that k is sufficiently far from --~--, n = 1, 2 . . . .  

The remaining part of the solution, in all sections of the field, is a 
convergent series containing all possible modes which, for ka< ~r, are all 
standing attenuated waves in the direction of their propagation. For  f =  0 
the solution concerns the surface elevation of the water without rotation, 
and also represents the solution of the corresponding problems in acoustics 
and electromagnetism, where the exitation is due to a plane harmonic 
wave. 
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